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Validity of the BCS model Hamiltonian in the limit of small sizes
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Finite-size effects when the electronic level spacings become comparable to the bulk superconducting gap
can suppress pairing correlations in small metallic particles. We examine an alternative mechanism for finite-
size suppression of superconductivity: the role of the nonpair portion of the interaction, which could become
important in small systems. We show that the crossover size at which the nonpair contribution becomes
significant is typically already within the regime wherein finite level spacing suppresses the pairing correla-
tions; however, the nonpair terms could become relevant in certain weak-coupled superconductors.
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In sufficiently large systems at low temperatures energ
arguments will often favor simple correlations: the less
strictive the correlation, the greater the scope to superpo
large number of correlated states into an energetically fa
able ground state. Examples can be found in both class
and quantum systems, e.g., the existence of crystalline p
odicity in sufficiently large clusters and the irrelevance
fourfold and higher correlations in bulk BCS paire
superconductors.1 However, in sufficiently small systems
the phase space available for exploiting a simple energ
cally favorable correlation is more restricted and the sit
tion can change qualitatively. A classical example h
would be the nontetrahedral structures of small silic
clusters2 ~this point of view is more general and abstract th
is one based on, e.g., the relative importance of surface
volume energies in such clusters!.

In some cases, additional finite-size effects can arise f
the discretization of energy levels, e.g., Anderson’s obse
tion that superconductivity is suppressed when the ene
level spacing in a finite-sized superconductor exceeds
bulk superconducting gap.3,4 More recent work has buil
from this observation to develop the interesting field
finite-size~and fixed-N) superconductivity, including studie
of systems with equally spaced levels,5 Wigner-Dyson level
spacings,6 fluctuation effects,7 and fixed-N canonical
treatments.8 In these systems, the suppression of simple p
correlations through finite size is mediated by the coarsen
of the level spacing. Here we consider an alternative mec
nism which is independent of the existence of finite le
spacings and can also limit the size at which pairing co
lations take hold, namely, the size dependence of the non
correlated part of the interaction. This channel falls outs
of the usual BCS model Hamiltonian, but could become i
portant in sufficiently small systems wherein the phase sp
to exploit the pairing correlations is severely limited. A cla
sical analog is again very small atomic~e.g., Si! clusters
which assume structures that differ greatly from the lo
structure of the bulk crystalline lattice due to the inability
repeat the favorable structural motifs of the bulk system.

Although the nonpair-correlated part of the BCS on
square-well interaction oscillates randomly in sign,9 these
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nonpair matrix elements comprise the vast majority of
Hamiltonian matrix. For sufficiently small systems the low
est eigenvalue of the random portion of the interaction m
trix might be lower in energy than the BCS state, raising
question of when this crossover occurs. In a bulk system
BCS ground state is lower in energy than the normal state
roughly N(0)D2;N(D/EF)D (N being the total number o
electrons!, a constant energetic lowering per electron.10 The
nonpair-correlated part of the Hamiltonian matrix contain

total number of relevant basis states (Ñ/2
Ñ ), where Ñ

[2N(0)\vphonon gives the number of states which are a
tive in superconductivity@andN(0) has units of (energy)21,
not (energy volume)21#. We concentrate on the interactio
portion of the Hamiltonian instead of the kinetic compone
since we are interested in the rough size of the change in
energy upon introduction of the interaction.

The majority of the matrix elements between the ba
states are zero, since the phonon mediated BCS elec
electron interaction connects states which differ in occu
tion numbers for only four electronic states. Fixing attenti
on a given initial many-electron state, the number of fin
many-electron states which give nonzero matrix element
determined by first choosing two particular filled singl
particle states as the electrons which will scatter in the ini
many-particle state and then choosing one empty sin
particle state in the initial many-electron state as a state
which an electron is scattered. The second empty stat
determined by momentum conservation; the condition tha
be empty introduces an inconsequential factor of one h
Picking these single-particle states from the vicinity of t
Fermi energy, the fraction of nonzero matrix elements in
matrix representing the interaction is then essentially

S Ñ/2

2
D S Ñ/2

1
D

S Ñ

Ñ/2
D . ~1!
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Each nonzero matrix element is assumed to have a cha
teristic size (1/N)Ṽ, whereṼ is a volume-independent mea
sure of the coupling matrix element.11 Ṽ might be reduced
from the value in the pair-correlated channel due to the
tailed character of the overlap integrals entering the ma
elements for short-ranged interactions,3 but such a reduction
is not necessary for the current argument.

Assuming no hidden structure in the matrix element d
tribution, the lowest eigenvalue of the essentially random
signed uncorrelated piece of the interaction matrix can
estimated from random matrix theory. The matrix is the
perposition of two distributions. One is a delta function
zero. The second can be approximated by a Gaussian d
bution with standard deviation (1/N)Ṽ, where the results are
insensitive to the exact form of this distribution. For calc
lational purposes the delta function can be approximated
very thin rectangular distribution so that we superpose
distributions that both yield circle distributions o
eigenvalues.12 The result is then another circle distibutio
with lowest eigenvalueAMs, wheres is the standard de
viation of the entire distribution andM is the number of rows
or columns in the matrix. The standard deviation is grea
reduced from (1/N)Ṽ by the majority zero matrix elements
yielding a lowest eigenvalue

Ṽ

N
AS Ñ

2
D S Ñ

1
D 5Ṽ

Ñ

N
A1

2
~Ñ21! ~2!

which scales with system size13 as AÑ with rough value

Ṽ(\vphonon/EF)AÑ. This lowest eigenvalue sets the scale
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the possible energetic lowering of the ground state due to
introduction of the nonpair part of the interaction. Taking t
ratio with the pair-correlated BCS energy ofD2N(0), we
obtain

Ṽ

EF
S \vphonon

D
D 2 1

AÑ
. ~3!

The ratio scales as 1/AÑ with a prefactor that depends upo
material-specific quantities, but can be in the ran
;1 – 10. Therefore the crossover below which the nonp
correlated interactions become important occurs in a size
gime which is typically somewhat smaller than that of t
onset of finite size effects due to the coarsening of the e
tronic energy levels. However, for weakly coupled system
the influence of the nonpair terms could become significa
depending upon the detailed material- and distan
dependent magnitudes of the nonpair matrix elements. T
result is distinct from arguments that relate pairing corre
tions between non-time-reversed states to the magnetic
sponse of finite-sized superconducting grains8 in that the cur-
rent results do not depend on the relative sizes of ma
elements between time-reversed and non-time-reve
states.
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Energy under Contract No. DE-AC03-76SF00098.
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1For example, the pairing correlations embodied by the B
Hamiltonian~Ref. 9! overpower analogous fourfold correlation
~which have similar uniformly signed interaction matrix el
ments!, since the number of many body basis states with fo
fold correlation is much smaller than the number with pairw

correlations. Explicitly, an N electron system with Ñ
52N(0)\vphononstates active in superconductivity has rough

( Ñ/4
Ñ/2) pair-correlated states in the superposition as compare

only (Ñ/8
Ñ/4) quartet-correlated states; the quartet correlations t

comprise roughlye2Ñ/2 times fewer basis states with which t
construct the nonpositive submatrix. The simplest correlati
afford the largest scope for the accumulation of energetic
favorable configurations.~The fraction of nonzero matrix ele
ments in the quartet correlated submatrix does increase slig
but this increase is insignificant compared to the reduction in
size of the submatrix.!
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